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A next generation, Intel Architecture compatible microprocessor 
with dynamic execution has been implemented with a 0.6um 4 
layer metal BiCMOS process [1]. Performance is achieved through
the use of a large, full-speed cache accessed through a dedicated 
bus interface feeding a generalized dynamic execution 
microengine. A primary 64-bit processor bus includes additional 
pipelining features to provide high throughput to this CPU and 
cache. These and other techniques result in a projected 
performance of greater than 200 Ispec92. Testability features built 
into the design allow complete access to all structures without the 
overhead of a full LSSD implementation.  Included in this paper 
are a microarchitecture block diagram, implementation details and 
a die photo.

This processor implements dynamic execution using an out-of-
order, speculative execution engine, with register renaming of 
integer [2], floating point and flags variables, multiprocessing bus 
support, and carefully controlled memory access reordering. The 
flow of Intel Architecture instructions is predicted and these 
instructions are decoded into micro-operations (uops), or series of 
uops, and these uops are register-renamed, placed into an out-of-
order speculative pool of pending operations, executed in  
dataflow order (when operands are ready), and retired to 
permanent machine state in source program order. This is 
accomplished with one general mechanism to handle unexpected 
asynchronous events such as mispredicted branches, instruction 
faults and traps, and external interrupts. Dynamic execution, or the 
combination of branch prediction, speculation and micro-dataflow,
is the key to the high performance.

The basic operation of the microarchitecture ( Figure 1) is as 
follows:
1. The 512 entry Branch Target Buffer (BTB) helps the 

Instruction Fetch Unit (IFU) choose an instruction 
cache line for the next instruction fetch. ICache line 
fetches are pipelined with a new instruction line fetch 
commencing on every CPU clock cycle.

2. Three parallel decoders (ID) convert multiple Intel 
Architecture instructions into multiple sets of micro-ops
(uops) each clock.

3. The sources and destinations of these uops are renamed by 
the Register Alias Table (RAT), which eliminates 
register re-use artifacts, and are forwarded to the 
Reservation Station (RS) and to the ReOrder Buffer 
(ROB).

4. The renamed uops are queued in the RS where they wait for 
their source data - this can come from several places, 
including immediates, data bypassed from just-
executed uops, data present in a ROB entry, and data 
residing in architectural registers (such as EAX).

5. The queued uops are dynamically executed according to their
true data dependencies and execution unit availability 
(IEU, FEU, AGU). The order in which any given uops 
execute in time has no particular relationship to the 
order implied by the source program.

6. Memory operations are dispatched from the RS to the 
Address Generation Unit (AGU) and to the Memory 
Ordering Buffer (MOB). The MOB ensures that the 
proper memory access ordering rules are observed.

7. Once a uop has executed, and its destination data has been 
produced, that result data is forwarded to subsequent 
uops that need it, and the uop becomes a candidate for 
“retirement”.

8. Retirement hardware in the ROB uses uop timestamps to 
reimpose the original program order on the uops as 

their results are committed to permanent architectural 
machine state in the Retirement Register File (RRF). 
This retirement process must observe not only the 
original program order, it must correctly handle 
interrupts and faults, and flush all or part of its state on 
detection of a mispredicted branch. When a uop is 
retired, the ROB writes that uop’s result into the 
appropriate RRF entry and notifies the RAT of that 
retirement so that subsequent register renaming can be 
activated. 

 The component includes separate data and instruction L1 caches 
(each of which is 8KB), and a unified  L2 cache. The L1 Data 
Cache is dual-ported, non-blocking, supporting  one load and one 
store per cycle. The L2 cache interface runs at the full CPU clock 
speed, and can transfer 64 bits per cycle. The external bus is also 
64-bits and can sustain a data transfer every bus-cycle. This 
external bus operates at 1/2, 1/3, or 1/4 of the CPU clock speed.

Clock distribution was carefully designed to minimize skew across
the entire die by generating a master clock with a PLL which has 
been delay synchronized to output signals. Global clocks 
distributed to 80 different units across the die are then buffered for 
the specific load in each clock sub-branch. Tuning of these drivers,
and careful routing of the global clocks, results in a worst-case 
global clock skew of 250 pS.

BiCMOS circuits were used extensively thoughout the design, 
providing lower delay for higher loads, and increasing overall 
performance by approximately 15%.  Figure 2 shows the relative 
delay to a comparable CMOS inverter and Figure 3  shows the 
most common implementation of a BiCMOS gate.  

A Vdd of 2.9v was selected as an optimal point for CMOS and 
BiCMOS gate performance while reducing overall power.

Delayed precharge domino logic, shown in Figure 4, was also used
for speed-critical paths, particularly in the instruction decode logic,
and resulted in lower power than standard domino logic during  
transitions with fewer race conditions on outputs.

Test structures were defined allowing full access to all processor 
logic while requiring only 4% of the full die area and incurring no 
speed penalty. This is accomplished through the use of test 
registers, mode bits to provide specific logic access, and the use of 
serial Scanout (scan chains). Scanout in particular provides 
observability of virtually all important signals within the design 
with no speed impact, and it is used extensively in test and debug. 
On-chip BIST is implemented to complement the Scanout 
observability. The processor is a fully static design accommodating
IDDQ testing.

Features for lower power operation, (such as StopClock and 
standby mechanisms) and features intended to improve system 
management and RAS (Reliability, Availability, Serviceability) are
included. An extensive Machine Check Architecture has been 
incorporated, with facilities to detect errors in hardware and allow 
those errors to be handled in software.
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• BIU: Bus Interface Unit
• IFU: Instruction Fetch Unit (includes ICache)
• BTB: Branch Target Buffer
• ID: Instruction Decoder
• MIS: Microinstruction Sequencer
• RAT: Register Alias Table
• ROB: ReOrder Buffer
• RRF: Retirement Register File
• RS: Reservation Station
• IEU: Integer Execution Unit
• FEU: Floating point Execution Unit
• AGU: Address Generation Unit
• MIU: Memory Interface Unit
• DCU: Data Cache Unit (includes DCache)
• MOB: Memory ReOrder Buffer
• L2: Level 2 Cache 

Figure 1 - Basic CPU Block Diagram

        Figure 2 -  BiCMOS vs CMOS relative inverter delay
                                                                                                    Figure 4 - Delayed Precharge Domino
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Figure 3 - BiCMOS Gate
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