
A 0.6um BiCMOS Processor with Dynamic Execution
Robert P. Colwell, Randy L. Steck

A next generation, Intel Architecture compatible microprocessor
with dynamic execution has been implemented with a 0.6um 4
layer metal BiCMOS process [1]. Performance is achieved through
the use of a large, full-speed cache accessed through a dedicated
bus interface feeding a generalized dynamic execution
microengine. A primary 64-bit processor bus includes additional
pipelining features to provide high throughput to this CPU and
cache. These and other techniques result in a projected
performance of greater than 200 Ispec92. Testability features built
into the design allow complete access to all structures without the
overhead of a full LSSD implementation. Included in this paper
are a microarchitecture block diagram, implementation details and
a die photo.

This processor implements dynamic execution using an out-of-
order, speculative execution engine, with register renaming of
integer [2], floating point and flags variables, multiprocessing bus
support, and carefully controlled memory access reordering. The
flow of Intel Architecture instructions is predicted and these
instructions are decoded into micro-operations (uops), or series of
uops, and these uops are register-renamed, placed into an out-of-
order speculative pool of pending operations, executed in
dataflow order (when operands are ready), and retired to
permanent machine state in source program order. This is
accomplished with one general mechanism to handle unexpected
asynchronous events such as mispredicted branches, instruction
faults and traps, and external interrupts. Dynamic execution, or the
combination of branch prediction, speculation and micro-dataflow,
is the key to the high performance.

The basic operation of the microarchitecture (Figure 1) is as
follows:
1. The 512 entry Branch Target Buffer (BTB) helps the

Instruction Fetch Unit (IFU) choose an instruction
cache line for the next instruction fetch. ICache line
fetches are pipelined with a new instruction line fetch
commencing on every CPU clock cycle.

2. Three parallel decoders (ID) convert multiple Intel
Architecture instructions into multiple sets of micro-ops
(uops) each clock.

3. The sources and destinations of these uops are renamed by
the Register Alias Table (RAT), which eliminates
register re-use artifacts, and are forwarded to the
Reservation Station (RS) and to the ReOrder Buffer
(ROB).

4. The renamed uops are queued in the RS where they wait for
their source data - this can come from several places,
including immediates, data bypassed from just-
executed uops, data present in a ROB entry, and data
residing in architectural registers (such as EAX).

5. The queued uops are dynamically executed according to their
true data dependencies and execution unit availability
(IEU, FEU, AGU). The order in which any given uops
execute in time has no particular relationship to the
order implied by the source program.

6. Memory operations are dispatched from the RS to the
Address Generation Unit (AGU) and to the Memory
Ordering Buffer (MOB). The MOB ensures that the
proper memory access ordering rules are observed.

7. Once a uop has executed, and its destination data has been
produced, that result data is forwarded to subsequent
uops that need it, and the uop becomes a candidate for
“retirement”.

8. Retirement hardware in the ROB uses uop timestamps to
reimpose the original program order on the uops as

their results are committed to permanent architectural
machine state in the Retirement Register File (RRF).
This retirement process must observe not only the
original program order, it must correctly handle
interrupts and faults, and flush all or part of its state on
detection of a mispredicted branch. When a uop is
retired, the ROB writes that uop’s result into the
appropriate RRF entry and notifies the RAT of that
retirement so that subsequent register renaming can be
activated.

 The component includes separate data and instruction L1 caches
(each of which is 8KB), and a unified L2 cache. The L1 Data
Cache is dual-ported, non-blocking, supporting one load and one
store per cycle. The L2 cache interface runs at the full CPU clock
speed, and can transfer 64 bits per cycle. The external bus is also
64-bits and can sustain a data transfer every bus-cycle. This
external bus operates at 1/2, 1/3, or 1/4 of the CPU clock speed.

Clock distribution was carefully designed to minimize skew across
the entire die by generating a master clock with a PLL which has
been delay synchronized to output signals. Global clocks
distributed to 80 different units across the die are then buffered for
the specific load in each clock sub-branch. Tuning of these drivers,
and careful routing of the global clocks, results in a worst-case
global clock skew of 250 pS.

BiCMOS circuits were used extensively thoughout the design,
providing lower delay for higher loads, and increasing overall
performance by approximately 15%. Figure 2 shows the relative
delay to a comparable CMOS inverter and Figure 3 shows the
most common implementation of a BiCMOS gate.

A Vdd of 2.9v was selected as an optimal point for CMOS and
BiCMOS gate performance while reducing overall power.

Delayed precharge domino logic, shown in Figure 4, was also used
for speed-critical paths, particularly in the instruction decode logic,
and resulted in lower power than standard domino logic during
transitions with fewer race conditions on outputs.

Test structures were defined allowing full access to all processor
logic while requiring only 4% of the full die area and incurring no
speed penalty. This is accomplished through the use of test
registers, mode bits to provide specific logic access, and the use of
serial Scanout (scan chains). Scanout in particular provides
observability of virtually all important signals within the design
with no speed impact, and it is used extensively in test and debug.
On-chip BIST is implemented to complement the Scanout
observability. The processor is a fully static design accommodating
IDDQ testing.

Features for lower power operation, (such as StopClock and
standby mechanisms) and features intended to improve system
management and RAS (Reliability, Availability, Serviceability) are
included. An extensive Machine Check Architecture has been
incorporated, with facilities to detect errors in hardware and allow
those errors to be handled in software.

Acknowledgements
We are fortunate to represent the work of many talented, dedicated
professionals and it is mainly their efforts that are presented here.

References
[1] Schutz, J., “A 3.3V 0.6um BiCMOS SuperScalar

Microprocessor”, ISSCC Proceedings, pp. 202-203, 1994

[2] Hennessy, J. et al, Computer Architecture A Quantitative
Approach, Morgan Kaufman Publishers Inc., 1990

External Bus

MOB

IEU

MIU

AGU

FEU

ROB
 &

RRF

BTB

BIU

IFU

I

D
MIS

RAT

R

S

L2

DCU
• BIU: Bus Interface Unit
• IFU: Instruction Fetch Unit (includes ICache)
• BTB: Branch Target Buffer
• ID: Instruction Decoder
• MIS: Microinstruction Sequencer
• RAT: Register Alias Table
• ROB: ReOrder Buffer
• RRF: Retirement Register File
• RS: Reservation Station
• IEU: Integer Execution Unit
• FEU: Floating point Execution Unit
• AGU: Address Generation Unit
• MIU: Memory Interface Unit
• DCU: Data Cache Unit (includes DCache)
• MOB: Memory ReOrder Buffer
• L2: Level 2 Cache

Figure 1 - Basic CPU Block Diagram

 Figure 2 - BiCMOS vs CMOS relative inverter delay
 Figure 4 - Delayed Precharge Domino
Copyright(R) 1994 Institute of Electrical and Electronics Engineers. Reprinted from ISSCC Proceedings, February 1995.

This material is posted here with permission of the IEEE. Such permission of the iEEE does not in any way imply IEEE endorsement of any of
Intel's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for

Clock Buffer with skewed delay

Vcc
keeper

Vcc
keeper

Complex
gate

a-- b-- c-- a b-- c--

d-- e--

Figure 3 - BiCMOS Gate

D2D1

B

A

Out#

advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by sending a
blank email message to info.pub.permission@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws
protecting it.

